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Edge and modular edge irregularity

strength of some path related graphs
A.I. Almazaydeh

Abstract. For a simple, connected and undirected graph G(V,E)
the mapping φ : V (G) −→ {1, 2, . . . , k} that is defined from the
vertex set V (G) of the graph G to positive integers is called a vertex
k-labelling. Let x and y be two vertices in V (G), the weight of the
edge xy -denoted by w(xy)- is defined to be the sum of the label of the
vertex x and the label of the vertex y. That is wφ(xy) = φ(x)+φ(y).

An edge irregular k-labelling of a graph G is defined to be a
vertex k-labelling in which the weights of two distinct edges are not
equal. The edge irregularity strength, denoted by es(G), is an edge
irregular k-labelling where k is the smallest such that the weights
of the edges are distinct. If, by using some k-labelling where k is as
above, the weight of each edge is divided by modulo the total number
of the edges of the graph G, and the answers are all distinct, then
that k-labelling is called a modular edge irregularity strength.

Haryeni et al. in [8] found that the edge irregularity strength
of fan graphs Fn where n ∈ {2, 3, 4, 5, 6} is n + 1. In this paper,
we generalise this result for n = 2, 3, 4, . . . . Also we state the edge
irregularity strength and modular edge irregularity strength for some
lollipop graphs.
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1. Introduction

Consider a graph G with vertex set V (G) and edge set E(G), which

is simple, connected and undirected. A concept of edge irregular labelling

was given by Chartrand et al. in [6] which is improved later by Ahmad



18 A.I. Almazaydeh

et. al. in [1]. The concern of edge irregularity strength gain momentum

recently where many researches were done to calculate the edge irregularity

strength of different types of graphs, we mention for example, Pn, star

graphs of the form K1,n, cartesian product of two paths Pn, Pm and double

star graph where their precise values can be found in [1]. The value of edge

irregularity strength of toeplitz graphs was given by Ahmad et al. in [2],

and of triangular grid graphs in [14].

Recently, the edge irregularity strength of disjoint union of n-copies

of graphs, the complete graphs and the wheel graphs have been found in

[4]. Many more graphs were their edge irregularity strength are stated in

[3], [9] and [13].

The number of vertices of a graph G is called the order of G, and the

cardinality of the edges of a graph G is called the size of G. For a vertex

v ∈ V , the number of edges that is connected to v is called the degree of v.

We denote ∆(G) to be max{deg(v) : v ∈ V }. An important result worth

mentioning is the lower bound of the edge irregularity strength of any graph

G that is stated in the following Lemma.

Lemma 1.1 [1]. For a simple graph G of size m and maximum degree

∆(G), es(G) ≥ max{
⌈
m+1
2

⌉
, ∆(G)}.

2. Fan graphs

A fan graph Fn, n ≥ 2, is a graph obtained by joining all vertices of

a path Pn on n vertices to a further vertex, called the centre, which we

denote in this paper by u. So, Fn is isomorphic tho the join of the path Pn

and K1, denoted by Pn +K1. This type of graphs is known as the join of

two graphs and is defined as follows:

Consider two disjoint graphs G and H. The join G+H is the union of G

and H with the vertex set V (G)
⋃
V (H) and the edge set E(G)

⋃
E(H)
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such that the edges in G+H are the ones that joining every vertex of G to

every vertex of H. For more you can see [16], and for its edge irregularity

strength see [3].

Remark 2.1. It is worth mentioning that Fn is neither isomorphic to the

complete bipartite graph K1,n nor to the star graph but the last two are

isomorphic as it is witnessed in Figure 1. The edge irregularity strength of

K1,n is given in [11], where the edge irregularity strength of the complete

bipartite graph Km,n is found in [15].

On the other hand, note that the symmetric product of Pn and the

complement of the complete graph Km, which is denoted by Pn ⊕ Km

and is defined to be the graph with the vertex set V (Pn) × V (Km), and

{(u, v)(u′, v′) : uu′ ∈ E(Pn)} is the edge set. The edge irregularity strength

of the symmetric product Pn ⊕K2 is stated in [9].

Figure 1: Star graph, K1,n

For any fan graph Fn,|V (Fn)| = n + 1, where those vertices are the

vertices v1, v2, . . . , vn of the path Pn and the centre u, and |E(Fn)| = 2n−1

which are the edges uvi where 1 ≤ i ≤ n and the edges vivj where 1 ≤ i ≤

j ≤ n.

The lower and upper bounds for any Fn have been stated in the

following lemmas.

Lemma 2.2 [8]. Let Fn, n ≥ 2, be a fan graph of order n + 1. Then

es(Fn) ≥ n+ 1.

Lemma 2.3 [8]. Let G = Pn + K1, n ≥ 2. Then n + 1 ≤ es(G) ≤
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n+
⌊
n
2

⌋
.

In addition, the edge irregularity strength of Fn, n = 2, 3, 4, 5, 6 is

given in [8] by es(Fn) = n + 1. Now we generalise this to any n, but we

first present how to label the vertices of some fan graphs. Note that the

first five fan graphs are labelled in [8]. However, they can also be labelled

by the procedure we follow in labelling fan graphs in this paper to agree

with the proof of Theorem 2.4 below.

3

1 2 4 5 8 7 9

Figure 2: es(F7) = 9

3

1 2 4 5 9 7 8 10

Figure 3: es(F8) = 10

3

1 2 4 5 7 13 10 11 8 14 12 15

Figure 4: es(F11) = 14

Theorem 2.4. Let Fn be a fan graph of order n+1, n ≥ 2. Then es(Fn) ={
3, if n = 2

n+ 1 +
⌊
n−3
4

⌋
, if n ≥ 3

Proof. Let Fn be a fan graph that has n + 1 vertices. Firstly, if n = 2 it

is clearly that the edge irregularity strength is 3. We see by Lemma 2.2
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and Lemma 2.3 that the claimed edge irregularity strength of a fan graph

satisfies the lower and upper bounds such that es(Fn) = n + 1 +
⌊
n−3
4

⌋
≥

n+ 1, and n+ 1 +
⌊
n−3
4

⌋
≤ n+

⌊
n
2

⌋
for n ≥ 3.

To prove the claimed assertion we show that there is an edge irregular

n + 1 +
⌊
n−3
4

⌋
-labelling. Define a mapping φ : V (Fn) −→ {1, 2, 3, . . . , k}

where k = n + 1 +
⌊
n−3
4

⌋
to be a vertex labelling such that φ(u) = 3

(the centre), φ(v1) = 1, φ(v2) = 2, φ(v3) = 4, φ(v4) = 5 and φ(vi) ∈

{6, 7, 8, . . . , k} where i = 5, 6, 7, . . . , n.

Clearly φ is a one-to-one mapping because for any two vertices x 6= y

we can see that φ(x) 6= φ(y). Then the edge weights will be divided into

two sets:

� the set E1 consists of edge weights of the vertices uvi, i.e. the edges

joining the centre u with the vertices vi in the path Pn such that

wφ(uvi) ∈ {4, 5, 7, . . . , k+3} where the edge weight 6 does not appear

because φ(u) = 3 implies that φ(vi) 6= 3 for all i = 1, . . . , n, and k+ 3

is the largest possible edge weight, because it is the largest sum of

φ(u) (which is 3) and φ(vn) (which is k), hence the largest edge weight

is n+ 1 +
⌊
n−3
4

⌋
+ 3 = n+ 4 +

⌊
n−3
4

⌋
.

It is readily seen that all the labels of the vertices are, at most,

of the value n+ 1 +
⌊
n−3
4

⌋
, and its the smallest value that produces

distinct edge weights for all the distinct vertices.

� the second set of edge weights is E2, the set of edge weights of the

vertices vivj , 1 ≤ i ≤ j ≤ n such that wφ(vivj) ∈ {3, 6, 9, 11, 12, . . . , 2k−

1} where 2k − 1 is the largest possible edge weight because it is the

addition of φ(vn) and the edge weight of its predecessor vn−1, so it is

k + k − 1 = 2k − 1.

Now if we emerge E1 and E2 we get the edge set of the graph Fn,



22 A.I. Almazaydeh

namely E = {3, 4, 5, 6, . . . , k+ 3, . . . , 2k− 1} where all the edge weights are

distinct, so it can be observed that φ is an edge irregular k-labelling.

3. Lollipop graphs

Another type of graphs is obtained by gluing a path with a complete

graph by an edge, this type is called a lollipop graph.

Definition 3.1. A lollipop graph consists of a complete graph Kn joined

from one of its vertices by a bridge to a path graph Pt. This graph is

denoted by Ln,t.

In this context, we draw the edge connecting Kn with Pt by a dashed

line. It is clear that |V (Ln,t)| = n+ t. As the size of the complete graph is

1
2n(n− 1), and of the path Pt is t− 1 and there is one more bridge joining

Kn with Pt, then the size of Ln,t = 1
2n(n− 1) + t.

For the lollipop graphs, there are some of the calculated parameters,

for instance distance irregularity strength in [11] and total vertex irregularity

strength in [12]. We now state the edge irregularity strength for some

lollipop graphs.

As the complete graph Kn is a part of the lollipop graph, we use

es(Kn) in our labelling of the vertices of Ln,t. For this reason we include

the following theorem, and to keep this paper self contained the proof of

this theorem will be listed.

Theorem 3.2. Consider the complete graph G = Kn of order n ≥ 3. Then

es(G) =

⌊
ϕn+1

√
5

+ 1
2

⌋
, where ϕ = 1+

√
5

2 .

Proof. Let G = Kn be the complete graph of order n ≥ 3, with the

vertices set V , and and the edges set is E. Define the vertex labeling map

φ : V → {1, 2, · · · , k} such as

φ(v1) = 1, φ(v2) = 2
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and

φ(vm) = φ(vm−1) + φ(vm−2)

for all m = 3, 4, · · · , n.

Then, the labelings of the vertices v1, v2, v3, . . . , vn is φ(v1), φ(v2), φ(v3),

· · · , φ(vn) which form the Fibonacci sequence of the terms 1, 2, 5, 8, · · · ,

k =

⌊
ϕn+1

√
5

+ 1
2

⌋
with corresponding edge weights 3, 4, 5, · · · , φ(vn−1) +

φ(vn) which are all distinct.

Therefore, φ is an edge irregular k-labelling of G, and if es(G) ≤ k

then the used labelling map is not one-to-one, for which it will be not

irregular (every vertices are adjacent). Therefore es(G) ≥ k.

Using the fact that es(G) ≤ Fn (see [1]) , where Fn is the Fibonacci

number, it results that es(G) ≤ Fn = k. Hence, the claim follows.

Theorem 3.3. Let G = L3,t be the lollipop graph of 3 + t vertices. Then

es(G) =
⌈
3+t
2

⌉
+ 1.

Proof. Consider the lollipop graph L3,t with 3 + t vertices, which are

v1, v2, v3 of K3 and the vertices u1, u2, . . . , ut of the path Pt, with size 3+ t.

So ∆(G) = 3, and using Lemma 1.1, es(G) ≥ max{
⌈
4+t
2

⌉
, 3} =

⌈
4+t
2

⌉
so

the lower bound for es(G) is 3 which agrees with the least value of es(G).

To prove the claim of this theorem, we need to define an edge irregular⌈
3+t
2

⌉
+ 1-labelling, and this can be done as follows:

Define the map φ : V (G) −→ {1, 2, 3, . . . ,
⌈
3+t
2

⌉
+ 1} such that φ(v1) =

1, φ(v2) = 2, φ(v3) = 3 and φ(ui) = 3 +
⌊
i
2

⌋
for i = 1, 2, . . . , t. This

map assigns every vertex of G to a distinct value. The set of the edges is

{v1v2, v1v3, v2v3, v3u1, u1u2, . . . , ut−1ut} and their weights are {3, 4, 5, 6, 7,

. . . , 6+
⌊
t−1
2

⌋
+
⌊
t
2

⌋
} which forms a set of different integers. All this ensures

that φ is the needed bijection which completes the proof.
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Remark 3.4. Note that L3,t is isomorphic to (3, t) − kite graph (defined

below), where its edge irregularity strength is stated in [9], and it can be

seen that our result agrees with it.

Definition 3.5. A graph that consists of a cycle on m vertices, m ≥ 3, and

a path of t vertices such that the cycle and the path are connected by a

bridge is called the (m,t)-kite graph.

Example 3.6. Here is an example on labelling L3,4

3

2

1

3 4 4 5

Figure 5: es(L3,4) = 5

Theorem 3.7. Let G = L4,t be the lollipop graph of 4 + t vertices. Then

es(L4,t) = 5 +
⌊
t
2

⌋
.

Proof. Consider the graphG = L4,t which has a set of 4+t vertices, namely,

{v1, v2, v3, v4, u1, u2, . . . , ut} and its edges set {v1v2, v1v3, v1v4, v2v3, v2v4,

v3v4, v4u1, u1u2 . . . , ut−1ut}.

Note that ∆(G) = 4, so by Lemma 1.1, es(G) ≥ max{
⌈
5+t
2

⌉
, 4} =

⌈
5+t
2

⌉
for t ≥ 2. If t = 1 then max{

⌈
5+t
2

⌉
, 4} = 4 which still less than the least

value es(L4,1) = 5.

To prove the assertion, we define an edge irregular k-labelling, where

k = 5 +
⌊
t
2

⌋
, such that φ : V (G) −→ {1, 2, . . . , k}. The labelling of

the vertices is done by letting φ(v1) = 1, φ(v2) = 2, φ(v3) = 3, φ(v4) =

5, φ(u1) = 4 and φ(ui) = 5 +
⌊
i
2

⌋
, i ≥ 2.
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Clearly, this map is one-to-one. For the edge set {v1v2, v1v3, v1v4, v2v3,

v2v4, v3v4, v4u1, u1u2 . . . , ut−1ut}, the corresponding wights are {3, 4, 6, 5, 7,

8, 9, . . . , 10 +
⌊
t−1
2

⌋
+
⌊
t
2

⌋
} respectively, and they all are distinct. Thus φ

is the required irregular k-labelling.

Example 3.8. In this example we show the edge irregularity strength of

L4,5.

1

2

3

5 4 6 6 7 7

Figure 6: es(L4,5) = 7

Theorem 3.9. Let G = L5,t be the lollipop graph of 5 + t vertices. Then

es(G) = 8 for t = 1, and es(G) = 8 +
⌊
t+2
2

⌋
for t ≥ 2.

Proof. In this graph, ∆(G) = 5 and |V (G)| = 5 + t, so

es(G) ≥ max{
⌈

6 + t

2

⌉
, 5} =

{
5, if t = 1, 2⌈
6+t
2

⌉
if t ≥ 3

and this inequality agrees with the es(L5,1) that has the least value equals

to 8.

First, for t = 1 we have es(L5,1) = 8 where its vertices can be labelled

as in Figure 7 below.

For t ≥ 2, We define an edge irregular k-labelling φ, with k = 9+
⌊
t+2
2

⌋
such that φ : V (G) −→ {1, 2, . . . , k}, and the labelling can be done as the

following: the 5 vertices of the complete graph K5 are v1, v2, v3, v4, v5 and
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their labels are φ(v1) = 1, φ(v2) = 2, φ(v3) = 3, φ(v4) = 5, φ(v5) = 8 and

φ(ui) =

{
4 +

⌊
i
2

⌋
, if i is odd

8 + i
2 , if i is even

So φ maps each vertex to only one value.

On the other hand, the set of edges is {v1v2, v1v3, v1v4, v1v5, v2v3, v2v4,

v2v5, v3v4, v3v5, v4v5, v5u1, u1u2, . . . , ut−1ut}, and using the map φ their

weights are {3, 4, 6, 9, 5, 7, 10, 8, 11, 13, 12, 14 . . . , 18 +
⌊
t+1
2

⌋
+
⌊
t+2
2

⌋
}

respectively, which is equivalent to the set {2, 3, 4, . . . , 18 +
⌊
t+1
2

⌋
+
⌊
t+2
2

⌋
},

and this is a set of distinct integers, which completes the proof.

8

5

3

2

1

4

Figure 7: es(L5,1) = 8

Example 3.10. We present the edge irregularity strength of L5,6.

8

5

3

2

1

4 10 5 11 6 12

Figure 8: es(L5,6) = 12

Theorem 3.11. Let G = L6,t be the lollipop graph of 6 + t vertices. Then

es(G) =

{
13, if 1 ≤ t ≤ 6

13 +
⌊
t−6
2

⌋
, if t > 6
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Proof. Let L6,t be a lollipop graph. According to Lemma 1.1,

es(G) ≥ max{
⌈

7 + t

2

⌉
, 6} =

{
6, if t = 1, 2, 3, 4, 5⌈
7+t
2

⌉
, if t ≥ 6

and these values are less than the es(L6,t) which is 13.

To proceed we consider two cases:

(i) if 1 ≤ t ≤ 6, we define the map φ : V (G) −→ {1, 2, 3, . . . , 13} which

assigns the vertices {v1, v2, v3, v4, v5, v6} of the complete graph K6 to

{1, 2, 3, 5, 8, 13} respectively, and the vertices of the path Pt, where

t is at most is 6, such that {4, 8, 11, 9, 13, 10} for u1, u2, u3, u4, u5, u6

where P1 needs only u1, P2 needs only u1 and u2, and so on for P3 to

P6.

It is trivial that all the labels are distinct, and therefore the edge

weights are also distinct and they form the set of consecutive integers

{3, 4, 5, . . . , 23} in some order. Thus, in this case φ is an edge irregular

13-labelling. Here is the figure for this case.

13

85

3

2 1

4 8 11 9 13 10

Figure 9: es(L6,6) = 13

(ii) if t > 6, we again define a map φ : V (G) −→ {1, 2, . . . , k} where

V (G) = {v1, . . . , v6, u1, . . . , ut}, such that {φ(v1), . . . , φ(v6)} = {1, 2, 3, 5,

8, 13} respectively, fix φ(u1) = 4, φ(u3) = 11, and

φ(ui) =

{
8 + i−2

2 , if i is even

13 + i−5
2 , if i is odd and i ≥ 5
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All these labels are distinct. (Note that this labelling is also

works for the first case above). The set of the edges is {v1v2, v1v3, v1v4,

v1v5, v1v6, v2v3, v2v4, v2v5, v2v6, v3v4, v3v5, v3v6, v4v5, v4v6, v5v6, v6u1,

u1u2, u2u3, . . . , ut−1ut} and its corresponding set of weights is {3, 4, 6, 9,

14, 5, 7, 10, 15, 8, 11, 16, 13, 18, 21, 17, 12, 19, . . . , φ(vt)+φ(vt−1)} where

φ(vt) + φ(vt−1) = 8 + t−2
2 + 13 + (t−1)−5

2 = 17 + t.

The set of edge weights can be reorder as a set of consecutive

integers such as {2, 3, . . . , t+17}. As this set contains distinct integers,

then the map φ is the required k-labelling, which ends the proof.

Example 3.12. Here is the labelling to state es(L6,9).

13

85

3

2 1

4 8 11 9 13 10 14 11 15

Figure 10: es(L6,9) = 15

As it is clear, for each n, 3 ≤ n ≤ 6 we found a way to label the vertices

of each graph, so we end this section by the following open problem:

Open problem: State the edge irregularity strength for Ln,t for any t ≥ 7.

4. Modular edge irregularity strength of some
Lollipop graphs

A modular edge irregular strength is a k-labelling φ : V (G) −→ {1, 2, . . . ,

k} such that for any pair of different edges, the modular edge weights of

them are distinct, and it is denoted by mes(G). By modular edge weight is

meant that the remainder upon dividing the edge weight by modulo of the
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size of the graph; that is by |E(G)|. If that labelling does not exist, then

mes(G) =∞.

The notion of the modular edge irregularity strength is recent, and

was defined by Bača et al. in [5], and then it is improved by Koam et al.

in [10]. The modular edge irregularity strength for some types of graphs

as fan graphs and wheel graphs have been stated in [8], and for paths,

cycles, caterpillar graphs, friendship graphs and n-sun graphs also have

been evaluated in [10].

In this section, we state the modular edge irregularity strength for the

above lollipop graphs, but we first include some of the needed results.

By its definition, one can see that the modular edge irregularity strength

implies irregularity strength. That means for a simple graph G we have

es(G) ≤ mes(G), but the converse is not true. The following theorem is of

our importance.

Theorem 4.1. Let G be a simple graph with es(G) = k. If edge weights

under a corresponding edge irregular k-labelling constitute a set of consecutive

integers, then es(G) = mes(G) = k.

Using this nice result, we have the following corollaries of theorems 3.3, 3.7,

3.9 and 3.11. respectively.

Corollary 4.2. Let G = L3,t be the lollipop graph of 3 + t vertices. Then

mes(G) =
⌈
3+t
2

⌉
+ 1.

Corollary 4.3. Let G = L4,t be the lollipop graph of 4 + t vertices. Then

mes(L4,t) = 5 +
⌊
t
2

⌋
.

Corollary 4.4. Let G = L5,t be the lollipop graph of 5 + t vertices. Then

es(G) = 8 for t = 1, and mes(G) = 8 +
⌊
t+2
2

⌋
for t ≥ 2.



30 A.I. Almazaydeh

Corollary 4.5. Let G = L6,t be the lollipop graph of 6 + t vertices. Then

mes(G) =

{
13, if 1 ≤ t ≤ 6

13 +
⌊
t−6
2

⌋
, if t > 6

Example 4.6. Let us consider L6,6 in figure 9. The set of consecutive edge

weights is 3, 4, . . . , 23. As |E(L6,6)| = 21, we divide the edge weights in

the previous set by modulo 21, so we get the set of modular edge weights

{3, 4, . . . , 20, 0, 1, 2} respectively, which can be written as {0, 1, . . . , 20}.

5. Conclusion

In this paper, we discussed the edge irregularity strength of graphs

that are joined to paths in some way; namely the fan graphs Fn, where we

extended a result for es(Fn) where 2 ≤ n ≤ 6 given in [8] to n ≥ 2. Also we

stated the edge irregularity strength for some lollipop graphs Ln,t for n =

3, 4, 5, 6. Finally we used our results about es(Ln,t) to state the modular

edge irregularity strength for also the lollipop graphs Ln,t, n = 3, 4, 5, 6.
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[2] A. Ahmad, M. Bača and M.F Nadeem, On edge irregularity strength

of Toeplitz graphs, U. P. B. Sci. Bull., Series A, 78 (4), 155–162, 2016.

[3] A. Ahmad, A. Gupta and R. Simanjuntak, Computing the edge

irregularity strengths of chain graphs and the join of two graphs,

Electronic Journal of Graph Theory and Applications, 6 (2018), 201–207.



Edge and modular edge irregularity strength... 31

[4] A.I. Almazaydeh and B.N. Al-Hasanat,On the edge irregularity strength

of finite graphs , submitted, 2023.
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